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This is the first study of one of the transmission problems associate to the non- 
linear Schr6dinger equation with a random potential. We show that for almost 
every realization of the medium the rate of transmission vanishes when increas- 
ing the size of the medium; however, whereas it decays exponentially in the 
linear regime, it decays polynomially in the nonlinear one. 
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1. I N T R O D U C T I O N  

In this paper we study the propagation of nonlinear waves in one-dimen- 
sional random media. Such a problem arises a priori in many fields and in 
particular we have in mind condensed matter physics, plasma physics, 
optics, and so forth. We focus here for simplicity and pedagogy on the non- 
linear Schr6dinger equation, but our results do apply to many other 
situations, as can be easily seen from the approach developed in the paper 
and as is sketched in the conclusion section. We will mainly study the per- 
manent regime, but the results as discussed clearly have implications on the 
time-dependent problem in some time and length scale regime. 

The situation for the linear case is now well-known (l~4) and will be 
recalled in Section 1: for a given incident wave with frequency e), the trans- 
mission coefficient for a system of finite length L decays exponentially with 
L; this phenomenon is closely related to the phenomenon known as Ander- 
son localization in condensed matter physics. 

1 This work is part of a Th6se de Troisi~me Cycle by P. DevillardJ 6) 
Z Centre de Physique Th6orique, Laboratoire du CNRS LP014, I~cole Polytechnique, 

F-91128 Palaiseau, France. 
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The problem is a priori much more difficult for the nonlinear case, and 
techniques used to study the linear case seem to fail completely in the n o n -  
linear one. Surprisingly there are, as far as we know, no result about the 
transmission of nonlinear waves in random media, at least if the backscat- 
tering is present (a situation in which the backscattering is not present has 
been discussed in Rosales and Papanicolaou, Ref. 5). Thus we want to 
know how the exponential decay of the transmission may have been 
modified by the nonlinearities or, in other words, we want to know how 
localization theory has been modified by the presence of nonlinearities. 
This problem is also nontrivial from the numerical point of view since 
many approaches are numerically unstable. 

In fact, as we will see, the situation is very different in the nonlinear 
case from the linear one: first of all, as we will see, the transmission 
problem is no more uniquely defined and we will need to make more 
precise the problem under discussion. Then, although the transmission of 
an incident wave will again tend to zero as the size of the system increases, 
and although the decay will still be exponential when the wave is in the 
linear regime, when nonlinearities do play a role, the decay is much slower, 
essentially L 1. 

In Section 1, we pose more precisely the problem and in particular we 
recall the situation for the linear case. 

In Section 2, we discuss the nonlinear case and make precise which 
transmission problem we are looking at. We first prove that the trans- 
mission does go to zero as the length L of the system goes to infinity but 
we also prove that as long as nonlinearities are relevant the transmission 
cannot decay faster than L 2. Finally we present numerical and theoretical 
results indicating that in fact it decays as L-1  in this regime. 

2. S T A T E M E N T  OF T H E  P R O B L E M :  T H E  L INEAR CASE 

In the present section, we recall how to study the transmission coef- 
ficient for the linear case. The eigenvalue equation for a linear Schr6dinger 
equation with a random potential V(x) is 

- ~uxx + V ( x ) ~ =  k2~  (1) 

The precise form of the random potential is certainly not essential in our 
problem, and so we restrict ourselves to the simplest model, namely that V 
is a stepwise constant function: in each interval [x, x + s], V is constant 
and chosen with some probability to be equal to Vmi, or V~ax, the length 
of each step being chosen randomly on [0, + oe [ with a density; the Vs on 
different steps are assumed to be independent random variables. The case 
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where k2~< Vma x is trivial and thus we will always restrict ourselves to the 
case where k2~> Vmax- 

Therefore, we must study the stationary Schr6dinger equation. When 
an incident plane wave of wavelength k attacks a slab of disordered 
medium of length L, we get a reflected wave and a transmitted one, of 
respective wavelengths k and - k .  From the theory of wave propagation in 
disordered media, (1-4) it is known that, for almost every realization of the 
medium [-that is, of the potential V(x)], the transmission Itl/rol 2 of the 
slab tends asymptotically exponentially to zero as L tends to infinity: 
I t l / r o f 2 ~ e x p ( - 2 L / ~ )  as L ~  oo where ~ is a characteristic length. This 
phenomenon is closely related to a phenomenon well-known in condensed 
matter physics under the name of Anderson localization, which predicts 
that in some conditions of disorder and, in particular, for any disorder in 
dimension one, all the proper modes of the Schr6dinger equation with a 
random potential are exponentially localized for almost every realization of 
the random potential; for reviews on localization theory see, for example 
Refs. 7 and 8 and see Ref. 9 for a large bibliography. The connection 
between the exponential decay of the transmission and the localization 
phenomenon for disordered systems is clarified in Ref. 10. 

The condition expressing that we have an outgoing wave at the right 
of the sample is 

7 t ( x ) = t l e  ikx for x > 0  (2) 

On the left of the sample we have 

~ ( x ) = r o e i ~ X + r l e - i k x  for x < - L  (3) 

and the conserved current reads 

J =  (Tz* ~x - ~ * ) / 2 i =  It1[2= Ir012- Irll 2 (4) 

The method used to show that the transmission tends to zero 
exponentially as L tends to infinity uses theorems on the product of ran- 
dom matrices: on the nth step the solution can be written as 

~ ( x )  = a , e  ikx + b , e  -i~x (5) 

and if we denote by M~ the transfer matrix on the nth step, that is, the 2 x 2 
matrix which allows us to compute a ,  and b, from a,  +1 and b,, +1, we have 

(tl, 0 ) ' =  M ( L ) ' ( r o ,  r l ) '  (6) 

where M ( L )  = M o M  1,.., M - L .  Equation (6) can now be rewritten as 

t~-l- (ro, r l ) ' =  M ( L ) - I -  (1, 0)' (7) 

822/43/3-4-3 



426 Devillard and Souillard 

and a well-known theorem of Fiirstenberg ~m can be applied (for a review 
of the mathematical results on products of random matrices we refer the 
reader to Ref. 12. It tells us that for given k and for almost all realizations 
of the medium the vector obtained from the fixed vector (1, 0) t by applying 
the random matrix M ( L )  ~ is exponentially increasing with L, from which 
it readily follows in view of Ref. 7 that the transmitted power Itl/ro[ 2 
decreases exponentially with L. 

3. POWER LAW DECAY OF THE T R A N S M I S S I O N  IN THE 
NONLINEAR REGIME 

We turn now to the study of the nonlinear case for which the 
approach used for the linear case, and recalled above, clearly cannot be 
transposed in a straightforward way. As already mentioned, we restrict 
ourselves for simplicity to the study of the nonlinear Schr6dinger equation 
with a random potential although some of our results can be easily exten- 
ded to many other situations. 

We thus consider the nonlinear Schr6dinger equation for a slab of 
nonlinear disordered medium of length L, outside of which the medium is 
supposed for simplicity to be linear and nonrandom (see Fig. 1). Since, as 
will appear below, we will be mainly concerned with the stationary 
equation and since for e < 0, its solutions blow up at a finite distance x, we 
consider here only the case where c~ > 0. Thus we study the equation 

with 

i45t= ~xx+C~(x) I~12 ~ -  V(x)~ (8t 

~(x) = c~ > 0 for -L<~x<~O 

= 0  for x < - L a n d x > O  

V(x) = 0 for x < - L a n d x > O  

and V(x) on -L<~x<~O is the same random potential as in Section 1. 
Since we study only the permanent regimes we look for solutions of 

(8) of the type 

OS(x, t) = eik2~(x)  

so that we have to study the stationary equation 

- 7Jxx-~(x )17 t l  2 ~ +  V(x)7~=kZ~P (9) 

and as in Section 1 we restrict ourselves only to nontrivial situations where 
k 2 > Vma x. 
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Fig. 1. The situation studied in the present paper: a standing wave in a piece of nonlinear 
and disordered material, between two pieces of linear and homogeneous material. On the right 
of the material for x/> 0 the wave is only outgoing, whereas on the left for x ~< - L  there is an 
incoming and a reflected wave. 

Note  that  in contrast  to the linear case the general t ime-dependent  
problem is no longer completely reducible to the study of the s tat ionary 
problem. In part icular  we have neglected the creation of harmonics;  at this 
point  it may  be nevertheless interesting to notice that the localization 
length of  higher harmonics  is larger than the one for the fundamental ,  and 
thus coupling to the harmonics  should contr ibute to a delocalization. In a 
s traightforward way, the restrictions above can be turned into length and 
time scale condit ions for the applicability of the results of the present work 
to physical situations. 

We want  to s tudy the transmission problem associated to the 
s tat ionary nonlinear  Schr6dinger equat ion (9); it corresponds as in Sec- 
tion 1 to the condit ions 

7U(x)=tle  ~k~ for x > O  (10) 

g t (x )=roe ik~+r le  ~k~ for x < - L  (11) 
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We note that the current 

J =  (gF*g* x -  g * ~ * ) / 2 i =  It1] 2 = lro[ 2 -  ]rll  2 

is still conserved. 
But the first question we have to ask ourselves is the following: What 

is really the transmission problem we want to look at? This question has to 
be asked now since in contrast to the linear case it is no longer equivalent 
to study the transmission problem for fixed input ro or fixed output tl. In 
this paper we study the question of the transmission for fixed output which 
arises, for instance, if one needs a fixed minimal power at the end of the 
slab in order to activate some device, and we thus ask for the 
corresponding necessary input power as a function of the length of the slab. 

We note that for given output ]tit  2, that is, for given current J, there is 
one and only one solution of the problem given by (9-11). (In contrast for 
fixed input amplitude r0, there is always at least one solution (tl,  rl) to the 
problem but, because of nonlinearities, there may be more than one for a 
given L, and interesting results on bistability phenomenon in that case 
have been obtained recently. (13) Thus we can now ask for the behavior of 
the transmission jtl/ro] 2 as a function of the length L of the system. The 
first question to ask is certainly whether the transmission still goes to zero 
as the length L of the sample goes to infinity; we will answer this question 
and prove that indeed this is the case. The next question is then, of course, 
how does it goes to zero? For  small enough t~ the problem will be almost 
linear, at least as long as L is not too large, and we thus should expect an 
exponential decay of transmission in this regime. We will obtain it, but in 
contrast we show that, when the nonlinearity begins to exert itself, that is, 
for larger tl or for any tl and sufficiently large L, then the transmission 
behaves in a polynomial way and in fact does not decay faster than L -2. 
Since we do not get by this method the exact law of the behavior in this 
regime we then study this question numerically and theoretically and we 
argue that the exact behavior in the nonlinear regime is of the type L-1  

Let us state now our exact results more precisely, the numerical and 
theoretical ones being discussed later. 

T h e o r e m .  (1) The transmission [tl/rol 2+~ goes to zero as L ~  oo 
in the sense of the Cesaro mean, for any e > 0, for almost every realization 
of the medium. 

(2) For  almost every realization of the medium, the transmission 
ftl/rot 2 behaves exponentially for J small enough and L not too large. 

(3) For  any J the transmission Itl/rol 2 cannot tend toward zero 
faster than L - 2  as L ~ oo. 



Transmission for the Nonlinear Schr6dinger Equation 429 

In order to study the decrease of the transmission coefficient and 
obtain result (1), we develop a method introduced in Ref. 14 for the study 
of the linear case: this method was somehow forgotten since it yields only a 
weak form of decay in contrast to the exponential decay obtained easily 
using the Fiirstenberg theorem; however, as we see now, it can be used to 
apply to nonlinear cases. The result of (2) concerning the exponential 
behavior as long as the linear regime is dominant will follow from the fact 
that the Lyapunov exponent of some nonlinear transformation can be 
proven to be nonzero in some neighborhood of zero, thus yielding the 
existence of stable and unstable manifolds in this neighborhood and 
allowing the use of standard techniques of dynamical systems theory. 
Finally, general a priori bounds will provide us with a lower bound on the 
decay of the transmission, ensuring result (3). 

(a) P r o o f  o f  Par t  1 o f  t h e  T h e o r e m .  Following Ref. 14, we 
introduce the impedance z = 7tx/7 t instead of the wave function 7 t (note 
that 7t= 0 would imply J =  0 and thus z is always finite). Equation (9) thus 
becomes the Ricatti equation 

Zx4-Z2-t-k 2 -  V(x)+c~J/Im(z)=O for -L<<.x<~O (12) 

and the boundary conditions (10) and (11) become 

z(0) = i 

rl/ro = [ i -  z( - L ) ] / [ i  + z( - L ) ]  

(13) 

(14) 

The equations for the integration of z = u + iv on a step of constant V are 

Ux = --U 2 + V 2 -- (k 2 - V) - ~J/v  

v x = - 2 u v  

(15) 

(16) 

and 7 y, gtx, and thus z are continuous at the edge of the steps. 
If we denote by ~b,.v the integration of (12) (14) from the right to the 

left end of a step of length s and potential V, we have, for a slab of N steps 
of total length L = ZJ _< i~< N ~'i 

Z ( - - L )  = (i~N[z(O ) ] = ~ N (  i) (17) 

where (~)N holds for ~I~SN, VNO*' 'o  ~s2,V2W~)SL,V 1 and thus r I can be readily 
computed as 

r l ( N )  = ro(N)"  [ i -  ON(i)  ] / [ i  + oN(i)]  (18) 



430 Devillard and Souillard 

Let us introduce the function f ( z ) =  ( 1 -  I i - z l / l i  + z l )1 +~ where e is an 
arbitrarily small positive number. The Cesaro mean of ( 1 -  Irll/Irol)l +~ is 
defined by 

N -1 ~ [1-1rl(n)/ro(n)t] I+~=N 1 ~ f[~"(i)] 
l<~n<~N l<~n<~N 

and we introduce 

F ( z ) =  lim N - '  ~ f [ ~ " ( z ) ]  
N ~ o o  O ~ n < ~ N  1 

when it exists. 
At this step it is important to note that all the transformations q~n con- 

serve the measure d/~ = du" dv/v2: it suffices to set w = 1Iv and to check that 
the volume is conserved in the u, w plane; namely, du. dw is conserved 
because 

(a /au)  u~ + (a/aw) wx = 0 

and in fact the term due to the nonlinearity in (15) plays no role in it 
because (O/Ou)(~J/v) =- O. 

In order to simplify notation, we denote by aj the randomness on the 
j th  step (from the right); that is, the length sj of the step and the height Vs. 
of the potential on it: a j -  (sj, Vj). A configuration of potential on x ~< 0 will 
be denoted co-= {aj}j~ • and s  denotes the set of possible con- 
figurations of the medium. The probability distribution on the possible 
configurations is denoted by P. We introduce the "skew product" G from 
(f2 x C + ) into itself 

G(co, z ) =  [z(co), qs~l(z)] 

C + being the upper complex half plane v > 0 and r denoting the translation 
on co, that is, r ( { a , } ) -  {a,+~}; that q~ sends C+ into itself can be seen 
directly from (15) and (16). 

As we see in Appendix 1, the application G is ergodic on s x C + with 
respect to the measure P x/t. We thus suppose from now on that G is 
ergodic (note, however, that this is a nontrivial property, as will appear in 
the Appendix, and this is the place where the specific properties of the 
equation that we study do enter; it is the property which may not be true 
for some other equations). It thus follows from the random ergodic 
theorem (15) that F(z) exists and is equal to a constant C for (P x #)-almost 
every (co, z) of f 2 x C + .  Since f e L l ( C + ; d # )  and since ~c+ d # = o %  the 
measure d# has infinite mass on C__ and we can induce that the constant C 
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has to be 0. In particular we thus have that for almost every realization of 
the medium, F(z) exists and is equal to zero for/~-almost every z of C+ .  

Since we are interested in the transmission problem we are 
interested--for a given typical medium--specifically in F(i); however i 
could belong to the set of those z with zero/ , -measure  for which the result 
of the previous paragraph would not hold. In order to solve this point we 
need to remark that the above result is in fact an asymptotic one and can 
thus be rephrased as: "for P-almost  every {ai}i>~3 , then for every a~, a2, 
and z such that qSa2o ~al(Z) does not belong to some fixed set of C + with 
zero/~-measure, F(z) exists and is equal to zero." It  is easy to check, as we 
do in Appendix 2, that qsa2 o ~ a l  is nondegenerate with respect to al and a2 
in the sense that the set of ~ 2 o ~ , ( i )  is of nonzero Lebesgue measure 
when Sl and s2 are varied continuously. It  thus follows that for P-almost  
every {ai}i> 1, that is, P-almost  every realization of the medium, F(i) exists 
and is equal to zero. This ensures the convergence to zero of the trans- 
mission as announced in result 1 of the Theorem. | 

(b) Proof of Port 2 of the Theorem. Let us consider the nonlinear 
transformation G on f2 x C + that we introduced above; if the parameter  c~ 
of the nonlinearity is set equal to zero (this is the linear case), this transfor- 
mation has two (opposite) nonzero Lyapunov exponents; using general 
perturbative results ~ we can deduce that G for small enough ~ has 
again two opposite nonzero Lyapunov exponents; this tells us that for fixed 
c~, but small enough current J, the transformation G has two opposite non- 
zero Lyapunov exponents. In turn it follows the existence of a stable and 
an unstable manifold for G in a neighborhood of zero for P-almost  every 
realization co of the medium. The announced result then follows from this 
fact through standard techniques that we thus skip. | 

(c) Proof of Port 3 of the Theorem. On each step with constant 
potential Vn, the nonlinear Schr6dinger equation (9) conserves the quan- 
tity 

Hn = [gtx] 2 + (k 2 - gn) I~PI 2 + ~ ] 7q4/2 (19) 

Since ~ and ~ are continuous at the edges of the steps, we have 

H,,+I--H.=(Vn--  V,,+ 1)17t(n)[ : 
and thus 

[Hn +1 - Hn] ~< (d V) ] 5U(n)] 2 (20) 

where d V denotes the maximum allowed fluctuation of the potential that is 
AV= Vm~x-- Vmi.. F rom (20), using (19), we obtain 

IH,,+ 1 - Hnl <~ (A V)(2H,,/~) 1/2 (21) 
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and from (21) one proves by induction that 

Hn ~< ( 2 ~ ) I ( d v ) Z ( n + A ) 2  (22) 

for some A; note that the dependence with respect to J lies only in A. 
When the nonlinear medium has N steps, one can bound from below H u as 
a function of the transmission: 

H u --= kZ(ro eikL - r le  ikL)2 + (k 2 _ VN)(roeikL q_ r le  ikL)2 

+ (~/2)(ro eikL + r le  i~L)4 (23) 

>1 (k 2 -  VN)(Irol2 + Irll=) 

= (k 2 -  VN)(2 I ro lZ--J )  (24) 

and the announced result follows by comparison of (22) and (24). (Note 
that almost surely the total length of a system of N steps is proportional 
to N). | 

Theoretical and Numerical Improvements of the Results 

We have seen above that due to nonlinearities, the transmission 
I tl/rol 2 cannot decay fast for long systems and in fact it cannot decay faster 
than L -2. Since this result was only a bound, we would like to discuss now 
if this rate is the exact one or if the transmission decays still slower. For 
this it is natural to first look to some numerical results before going back 
to the theoretical analysis: the solutions qss. v of (9)-(11) on a step of con- 
stant potential V and length s can be explicitly calculated in terms of the 
Jacobi elliptic functions, from which we can deduce numerically the value 
of ~ u ( i )  and thus of the transmission. 

We performed numerically the product cI)N(i) for a given current J and 
different values of ~; more precisely, since the only relevant parameter is ~J, 
we have made computations for various values of this parameter. For 0~J 
small (~J---10 13) the transmission, calculated from (DN(i), first decays 
exponentially when N increases as predicted in statement 2 of the Theorem 
above, and then slower. The crossover region appears approximately when 
~J/v is of order k 2 -  V, which is natural (see Fig. 2). For ~J large (~J=  1), 
we went up to 7000 iterations; the ratio I tl/rol has very important fluc- 
tuations and does not allow an average behavior to be extracted but the 
Cesaro mean of 1 - I r l / ro l  decays as L I for large N, thus corresponding to 
a decay of the transmission [tl/rol z as L-1,  a decay apparently slower than 
the bound obtained in statement 3 of the Theorem above (see Fig. 3). 
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Can we understand theoretically this true behavior of the trans- 
mission? Yes, in the following way: let's go back to (23). Instead of going 
to the lower bound (24) which is obtained only from the two first terms of 
(23), we could use the third term of (23) yielding 

H N >~ (e/2)[Irol 2 + hrll ~ + 2 R e ( r o r * e 2 i k c ) ]  2 (25) 

from which together with (22) and [ro[ 2 -  [ r l l 2 = J  would result that the 
transmission [tl/ro[ 2 does not decay faster than L - l ;  this is valid except 
when the argument of ror*e 2ikL is near to n mod(27c). In this latter case this 
new contribution is small and we only recover the bound associated to the 
first two terms of (23). However, the phase is turning and will not remain 
near n; we thus obtain from (25) an upper bound on the transmission 
Itl/ro] 2 of the type L -1 better than the one of statement 3 of the Theorem. 
This argument could be made rigorous. On the other hand, an "adiabatic 
theory" using the behavior of the Lyapunov exponent for the linear 
Schr6dinger equation at large energy can be used to obtain estimations in 
the other direction. It suggests that the true behavior may be of type L 
for the case of a steplike potential like the one we use here but should be 
even slower for smoother potentials. 

4. CONCLUSION: DISCUSSION AND EXTENSIONS 

We have studied the transmission for a class of nonlinear wave 
equations. For  the problem we have defined (as we have seen, the trans- 
mission problem is not uniquely defined for the case of nonlinear equations 
in contrast to the linear case) we have first shown that the transmission 
vanishes for long systems for almost every realization of the medium; it is 
clear from the proof that the same result holds for a very large class of dis- 
tributions of potentials and is not at all restricted to the distribution we 
have choosen for the sake of simplicity in the present paper. More 
interestingly the proof also extends to a very large class of other nonlinear 
equations, much beyond the special case of the nonlinear Schr6dinger 
equation. Since this extension is easy from our computations we decided to 
restrict ourselves to a pedagogical example. 

We then showed that in the almost linear regime, that is, for small 
current and small length, the transmission is exponentially decaying with 
length; again this result is very general and extends to very large classes of 
distributions and of nonlinear equations since in fact this is basically a per- 
turbative result and it depends almost only on whether the linear equation 
has an exponentially decaying transmission. 

Finally we have shown that in the nonlinear regime, that is, for large 
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current or long enough systems, the transmission cannot decay exponen- 
tially but in fact only very slowly. It has to be noted that such a result is in 
fact a deterministic one and thus does not depend on the distribution of the 
potential, and many other potentials can be accommodated in this type of 
argument; however, it depends crucially on the nonlinearity of the 
equation; the restriction on the decay shown in the present paper is due to 
the strong nonlinearity of the nonlinear Schr6dinger equation. Analogous 
results can hold for other types of equations but the precise dependence 
will depend strongly on the equation and on the a priori bounds that one 
can get on the solutions of the Cauchy problem associated to it. 

APPENDIX1:  SUFFICIENT CONDITIONS FOR THE 
ERGODICITY OF G 

In this Appendix we intend to prove that the transformation G is 
ergodic on s  with respect to the measure P x #  for the random 
potential studied in this paper; from the proof below it is clear that 
ergodicity can be proven for a very large class of ergodic random potentials 
on ~. 

In order to show the ergodicity of G, it is sufficient (16) to show that the 
family {qSs, v} is ergodic in the sense that the only subsets of C+,  invariant 
for the family, have zero or full measure with respect to # [a subset B of 
C+ is invariant for the family if for P-almost every (s, V), the symmetrical 
difference of B and qSs, v ( B  ) has zero #-measure]. 

It follows, as can be verified, that in our case it is sufficient that, given 
two arbitrary points of C § we can find a realization of the potential such 
that they can be connected by q~ transformations, i.e. 

V ( z l , z 2 ) ~ C + x C  +,  3(co, N) Ef2XNS.t. zI=qbN(z2) 

We are going to show now this property for the random potential we have 
choosen: in order to simplify notations, and since k 2 here is fixed, we 
introduce 

n 1 = ( k  2 - -  Vmax) 1/2 and n2 = (k 2 - Vmin) 1/2 

the applications ~s,v being correspondingly relabeled ~n,~- 
For a given constant potential V, that is, for n constant, there is a 

family of curves C(n, r) of C+ which are invariant by the applications q~n,~. 
for all s and which are given by the equations 

u 2 + I v  - -  (n 2 + r)1/2] ~ + ~ J / 2 v  = r 

for any r e [rmin, + O(3 [, for some rmi n > 0. This family of invariant curves 
fills C + entirely. Each of these invariant curves is contained in a rectangle, 
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(a) 

v 

( b )  

Fig. 4. (a) Two of the curves C(n, r) invariant by qsn, s for all s; here, in the case ~ J =  100, 
n = (k 2 -  V)1/2 = 1.5. If  r 2 >  rl > r~in, C(n, r l )  is contained in C(n, r2). ( b ) H o w  to connect X 
and Y: here is the simplest case when X' the Conjn,(X ) is below Y' the Conj,2(Y ). The picture 
is drawn with e J =  100, n 1 - 1.2, n 2 -  1.5. (c) The construct ion of the "spiral." The 1 and 2 
indicate, respectively, the arcs of curves C(nl, r) and C(n2, r). 
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(c) 

Fig. 4 (continued) 

and a line parallel to one of the coordinate axis can intersect in C + the 
curve at most at two points (see Fig. 4a). On the other hand, two curves of 
the family for the same n but of different r never intersect. Finally we note 
that for each n there is a point W(n) on the y axis, with ordinate w(n), 
which lies in the interior of all curves of the family; this point is itself the 
invariant curve obtained for r = rmin ; we note that w(n) is a strictly increas- 
ing function of n. 

Now on each curve C(n, r), two arbitrary points can be connected by 
at least one transformation ~b(n, s) for some s, since we have supposed for 
simplicity that the support of the distribution of s is ~+.  On the other 
hand, to every point P of C + is associated a curve C~(P) belonging to the 
family of curves C(nl, r) invariant by ~bn~,s for all s; the point P can thus be 
connected by a q~n~,, transformation to the point of Cn~(P ) located on the y 
axis below W(nl) and so it is now sufficient for us to show that two 
arbitrary points on the y axis, say X and Y, X <  Y, lying between the origin 
and W(nl), can be connected. 

In order to achieve this, let us denote by Conjn2(') the conjugation by 
a n2 curve, that is, the application which to any given point of the positive 
y axis associates the other point of the positive y axis which belongs to the 
same C(n2, r) curve. We define similarly Conjnl( ') the conjugation by an n l 
curve. Now if X', the Coning(X) lies below Y' the ConJn2(Y), then the 
C(n~, r) curve passing through X and iV' intersects the C(n2, r) curve pas- 
sing through Y and Y'. We are then in the situation of Fig. 4b and X and Y 
are connected. If this is not the case, we define the sequence of points (see 
Fig. 4c): X1 = X, X"  = Conj,l(Xm), ~[r m + 1 = C~ and we consider the 
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spiral-like continuous curve consisting of the pieces of C(n~, r) curves 
between points Xm, X" and the pieces of C(n2, r) curves between points 
X'm, J(m+l. If this "spiral" meets C,,2(Y), the C(n> r) curve passing through 
the point Y, then we can connect J( and Y through ~ transformations. We 
now show that this has to be the case. 

Suppose that this spiral never meets the C,,2(Y) curve. It means that 
X; > Y' and X~< Y always. But the sequence of X; would be a strictly 
decreasing sequence, provided W(nx)r W(n2) (i.e., provided nlCn2).  It 
thus has a limit point Xii  m with ~i im ~ Y' and Xtlim = C o n j n 2 o  Conjnl()l~tlim) , 

and since Conj~ is an involution we would have Conj,2(X'lim)= 
Conj,~(Xii~). If n~ r n2, this last equality is impossible to satisfy for a point 
X'~m of ordinate higher than Y', and, thus, than W(n2). 

APPENDIX 2: NONDEGENERACY OF q~,,,~ 

It is sufficient to prove that/~(A) > 0  where A is the set defined by 

A = {~ ..... o~nb,s~(i); (na, nb)~ {nl, n2} 2, (sa, sb)6 R + x ~+ } 

and nl, n2 are as in Appendix 1. Let us set 

Ao = {Onh,.,h(i); nbe {nl, n2}, sh~ R + } 

and denote by I the point of affix i and by P the Conj,,,(I) where the con- 
jugation has the same meaning as in Appendix 1. The set Ao is made of the 

c_ ,~ if) 

C ~, (I] 

Fig. 5. The set {qsn2.~2(x); s2~ N+, x c  C,,~(I)}. 
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two curves Cn,(I) and Cn2(I) as defined in Appendix 1. Now the ensemble 
{~n2,s2(X); s2 E ]0, + oe [, x e Cn~(I)} will in fact be the domain of the com- 
plex plane lying between C,,~(I) and C,~.(P), because the value of the 
parameter r for which the curve C,2(x ) is a curve C(n2, r) as defined in 
Appendix 1 varies continuously and monotonously as x goes from I to P 
on C,,~(I). This ensemble, the shaded area on Fig. 5, is contained in A and 
has nonzero/~-measure as soon as nl = n2. | 
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NOTE ADDED IN PROOF 

Concerning the influence of nonlinearities on Anderson localization, 
see also the paper by J. Fr6hlich, T. Spencer and C. Wayne, to appear in 
J. Stat. Phys. 
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